Back to Search
Start Over
Realization of wide circadian variability by quantum dots-luminescent mesoporous silica-based white light-emitting diodes.
- Source :
-
Nanotechnology . 10/20/2017, Vol. 28 Issue 42, p1-1. 1p. - Publication Year :
- 2017
-
Abstract
- Human comfort has become one of the most important criteria in modern lighting architecture. Here, we proposed a tuning strategy to enhance the non-image forming photobiological effect on the human circadian rhythm based on quantum-dots-converted white light-emitting diodes (QDs-WLEDs). We introduced the limiting variability of the circadian action factor (CAF), defined as the ratio of circadian efficiency and luminous efficiency of radiation. The CAF was deeply discussed and was found to be a function of constraining the color rendering index (CRI) and correlated color temperatures. The maximum CAF variability of QDs-WLEDs was found to be dependent on the QDs’ peak wavelength and full width at half maximum. With the optimized parameters, the packaging materials were synthesized and WLEDs were packaged. Experimental results show that at CRI > 90, the maximum CAF variability can be tuned by 3.83 times (from 0.251 at 2700 K to 0.961 at 6500 K), which implies that our approach could reduce the number of tunable channels, and could achieve wider CAF variability. [ABSTRACT FROM AUTHOR]
- Subjects :
- *QUANTUM dots
*MESOPOROUS silica
*LIGHT emitting diodes
Subjects
Details
- Language :
- English
- ISSN :
- 09574484
- Volume :
- 28
- Issue :
- 42
- Database :
- Academic Search Index
- Journal :
- Nanotechnology
- Publication Type :
- Academic Journal
- Accession number :
- 125328503
- Full Text :
- https://doi.org/10.1088/1361-6528/aa82d7