Back to Search Start Over

Realization of wide circadian variability by quantum dots-luminescent mesoporous silica-based white light-emitting diodes.

Authors :
Bin Xie
Jingjing Zhang
Wei Chen
Junjie Hao
Yanhua Cheng
Run Hu
Dan Wu
Kai Wang
Xiaobing Luo
Source :
Nanotechnology. 10/20/2017, Vol. 28 Issue 42, p1-1. 1p.
Publication Year :
2017

Abstract

Human comfort has become one of the most important criteria in modern lighting architecture. Here, we proposed a tuning strategy to enhance the non-image forming photobiological effect on the human circadian rhythm based on quantum-dots-converted white light-emitting diodes (QDs-WLEDs). We introduced the limiting variability of the circadian action factor (CAF), defined as the ratio of circadian efficiency and luminous efficiency of radiation. The CAF was deeply discussed and was found to be a function of constraining the color rendering index (CRI) and correlated color temperatures. The maximum CAF variability of QDs-WLEDs was found to be dependent on the QDs’ peak wavelength and full width at half maximum. With the optimized parameters, the packaging materials were synthesized and WLEDs were packaged. Experimental results show that at CRI > 90, the maximum CAF variability can be tuned by 3.83 times (from 0.251 at 2700 K to 0.961 at 6500 K), which implies that our approach could reduce the number of tunable channels, and could achieve wider CAF variability. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09574484
Volume :
28
Issue :
42
Database :
Academic Search Index
Journal :
Nanotechnology
Publication Type :
Academic Journal
Accession number :
125328503
Full Text :
https://doi.org/10.1088/1361-6528/aa82d7