Back to Search Start Over

Buckling analysis and buckling control of thin films on shape memory polymer substrate.

Authors :
He, Yuhao
Li, Yunxin
Liu, Zishun
Liew, K.M.
Source :
European Journal of Mechanics A: Solids. Nov2017, Vol. 66, p356-369. 14p.
Publication Year :
2017

Abstract

This paper presents a theoretical study and finite element simulation for the buckling of a thin film on the compliant substrate. First, we develop a continuum mechanics approach for large deformation buckling analysis based on minimizing the total energy of the film/substrate structures, and considering the precise curvature of the buckled film and the Poisson's ratio of the substrate. The predicting results using this proposed theory agree quite well with previous experimental results. Then, we make a modification for the model to simplify the expressions for the wavelength and amplitude of the buckled geometry. Furthermore, considering a thin Si film on shape memory polymer (SMP) substrate, we investigate the buckling behavior of the thin film through theoretical analysis and finite element method. Through the investigation, it is found that the evolution rate of the buckling geometry of thin film depends on the temperature of the SMP substrate, and the buckling geometry changes faster at a higher temperature. Finally, a programmed method to control the buckling of thin Si film on the SMP substrate is proposed and is realized with finite element simulation in ABAQUS. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09977538
Volume :
66
Database :
Academic Search Index
Journal :
European Journal of Mechanics A: Solids
Publication Type :
Academic Journal
Accession number :
125101206
Full Text :
https://doi.org/10.1016/j.euromechsol.2017.08.006