Back to Search Start Over

-Equol Activates cAMP Signaling at the Plasma Membrane of INS-1 Pancreatic β-Cells and Protects against Streptozotocin-Induced Hyperglycemia by Increasing β-Cell Function in Male Mice.

Authors :
Hiroko Horiuchi
Atsuko Usami
Rie Shirai
Naoki Harada
Shinichi Ikushiro
Toshiyuki Sakaki
Yoshihisa Nakano
Hiroshi Inui
Ryoichi Yamaji
Horiuchi, Hiroko
Usami, Atsuko
Shirai, Rie
Harada, Naoki
Ikushiro, Shinichi
Sakaki, Toshiyuki
Nakano, Yoshihisa
Inui, Hiroshi
Yamaji, Ryoichi
Source :
Journal of Nutrition. Sep2017, Vol. 147 Issue 9, p1631-1639. 9p.
Publication Year :
2017

Abstract

Background:S-equol, which is enantioselectively produced from daidzein by gut microbiota, has been suggested as a chemopreventive agent against type 2 diabetes mellitus (T2DM), but the underlying mechanisms remain unclear.Objective: We investigated the effects of S-equol on pancreatic β-cell function.Methods: β-Cell growth and insulin secretion were evaluated with male Institute of Cancer Research mice and isolated pancreatic islets from the mice, respectively. The mechanisms by which S-equol stimulated β-cell response were examined in INS-1 β-cells. The effect of S-equol treatment on β-cell function was assessed in low-dose streptozotocin-treated mice. S-equol was used at 10 μmol/L for in vitro and ex vivo studies and was administered by oral gavage (20 mg/kg, 2 times/d throughout the experimental period) for in vivo studies.Results:S-equol administration for 7 d increased Ki67-positive β-cells by 27% (P < 0.01) in mice. S-equol enantioselectively enhanced glucose-stimulated insulin secretion in mouse pancreatic islets by 41% (P < 0.001). In INS-1 cells, S-equol exerted stronger effects than daidzein on cell growth, insulin secretion, and cAMP-response element (CRE)-mediated transcription. These S-equol effects were diminished by inhibiting protein kinase A. The effective concentration of S-equol for stimulating cAMP production at the plasma membrane was lower than that for phosphodiesterase inhibition. S-equol-stimulated CRE activation was negatively controlled by the knockdown of G-protein α subunit group S (stimulatory) and positively controlled by that of G-protein-coupled receptor kinase-3 and -6. Compared with vehicle-treated controls, S-equol gavage treatment resulted in an increase in β-cell mass of 104% (P < 0.05), a trend toward high plasma insulin concentrations (by 118%; P = 0.06), and resistance to hyperglycemia after streptozotocin treatment (78% of AUC after glucose challenge; P < 0.01). S-equol administration significantly increased the number of Ki67-positive proliferating β-cells by 62% (P < 0.01) and decreased that of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive apoptotic β-cells by 75% (P < 0.05).Conclusions: Our results show that S-equol boosts β-cell function and prevents hypoglycemia in mice, suggesting its potential for T2DM prevention. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00223166
Volume :
147
Issue :
9
Database :
Academic Search Index
Journal :
Journal of Nutrition
Publication Type :
Academic Journal
Accession number :
125066327
Full Text :
https://doi.org/10.3945/jn.117.250860