Back to Search
Start Over
Phase dynamics in the complex Ginzburg–Landau equation
- Source :
-
Journal of Differential Equations . May2004, Vol. 199 Issue 1, p22. 25p. - Publication Year :
- 2004
-
Abstract
- For <f>αβ>−1</f>, stable time periodic solutions <f>A(X,T)=AqeiqX+iωqT</f> are the locally preferred planform for the complex Ginzburg–Landau equation∂TA=A+(1+iα)∂X2A−(1+iβ)A|A|2.In order to describe the spatial global behavior, an evolution equation for the local wave number <f>q</f> can be derived formally. The local wave number <f>q</f> satisfies approximately a conservation law <f>∂τq=∂ξh(q)</f>. It is the purpose of this paper to explain the extent to which the conservation law is valid by proving estimates for this formal approximation. [Copyright &y& Elsevier]
Details
- Language :
- English
- ISSN :
- 00220396
- Volume :
- 199
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Journal of Differential Equations
- Publication Type :
- Academic Journal
- Accession number :
- 12504285
- Full Text :
- https://doi.org/10.1016/j.jde.2003.11.004