Back to Search
Start Over
Nanometer-Resolved Spectroscopic Study Reveals the Conversion Mechanism of CaO·Al2O3·10H2O to 2CaO·Al2O3·8H2O and 3CaO·Al2O3·6H2O at an Elevated Temperature
- Source :
-
Crystal Growth & Design . Aug2017, Vol. 17 Issue 8, p4246-4253. 8p. - Publication Year :
- 2017
-
Abstract
- The main binding phases of calcium aluminate cement (CAC) concrete, CaO·Al2O3·10H2O (CAH10) and 2CaO·Al2O3·8H2O (C2AH8), slowly convert to 3CaO·Al2O3·6H2O (C3AH6) and Al(OH)3 (AH3). This reaction significantly speeds up at a temperature higher than ∼30°C, and over time leads to significant strength loss in CAC concrete. Because of the lack of direct evidence that simultaneously probes morphological and chemical/crystallographic information, intense debate remains whether the conversion is generated by a solid-state or through-solution reaction. The conversion of CAH10 at an elevated temperature is studied herein using synchrotron-radiation-based X-ray spectromicroscopy capable of acquiring near edge X-ray absorption fine structure data and ptychographic images with a resolution of ∼15 nm. We show that, when stored at 60°C, CAH10 first converts to C2AH8 by solid-state decomposition, followed by the through-solution formation of C3AH6. The C3AH6 crystallizes from both the relics of dissolved C2AH8 and from the surface of existing C3AH6 crystals. The solid-state decomposition of CAH10 occurs in multiple sites inside the CAH10 crystals; the spatial range of each decomposition site spans a few tens of nanometers, which overcomes the kinetics barrier of ion transportation in the solid-state. Our work provides the first nanoscale crystal-chemical evidence to explain the microstructure evolution of converted CAC concrete. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 15287483
- Volume :
- 17
- Issue :
- 8
- Database :
- Academic Search Index
- Journal :
- Crystal Growth & Design
- Publication Type :
- Academic Journal
- Accession number :
- 124465596
- Full Text :
- https://doi.org/10.1021/acs.cgd.7b00553