Back to Search Start Over

A process/physics-based compact model for nonclassical CMOS device and circuit design

Authors :
Fossum, J.G.
Ge, L.
Chiang, M.-H.
Trivedi, V.P.
Chowdhury, M.M.
Mathew, L.
Workman, G.O.
Nguyen, B.-Y.
Source :
Solid-State Electronics. Jun2004, Vol. 48 Issue 6, p919. 8p.
Publication Year :
2004

Abstract

A process/physics-based compact model (UFDG) for nonclassical MOSFETs having ultra-thin Si bodies (UTB) is overviewed. The model, in essence, is a compact Poisson–Schro¨dinger solver, including accountings for short-channel effects, and is applicable to nanoscale fully depleted (FD) SOI MOSFETs as well as generic double-gate (DG) devices. The utility of UFDG in nonclassical CMOS device design, as well as circuit design, is stressed, and demonstrated by using it in Spice3 to design UTB MOSFETs and to project extremely scaled DG and FD/SOI CMOS performances. Also, calibration of UFDG to fabricated FinFETs yields new physical insights about these potentially viable nanoscale DG devices, and about model requirements for them. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
00381101
Volume :
48
Issue :
6
Database :
Academic Search Index
Journal :
Solid-State Electronics
Publication Type :
Academic Journal
Accession number :
12443163
Full Text :
https://doi.org/10.1016/j.sse.2003.12.030