Back to Search Start Over

Hydrogen-Bond Strength of CC and GG Pairs Determined by Steric Repulsion: Electrostatics and Charge Transfer Overruled.

Authors :
van der Lubbe, Stephanie C. C.
Fonseca Guerra, Célia
Source :
Chemistry - A European Journal. 8/1/2017, Vol. 23 Issue 43, p10249-10253. 5p.
Publication Year :
2017

Abstract

Theoretical and experimental studies have elucidated the bonding mechanism in hydrogen bonds as an electrostatic interaction, which also exhibits considerable stabilization by charge transfer, polarization, and dispersion interactions. Therefore, these components have been used to rationalize the differences in strength of hydrogen-bonded systems. A completely new viewpoint is presented, in which the Pauli (steric) repulsion controls the mechanism of hydrogen bonding. Quantum chemical computations on the mismatched DNA base pairs CC and GG (C=cytosine, G=guanine) show that the enhanced stabilization and shorter distance of GG is determined entirely by the difference in the Pauli repulsion, which is significantly less repulsive for GG than for CC. This is the first time that evidence is presented for the Pauli repulsion as decisive factor in relative hydrogen-bond strengths and lengths. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09476539
Volume :
23
Issue :
43
Database :
Academic Search Index
Journal :
Chemistry - A European Journal
Publication Type :
Academic Journal
Accession number :
124416969
Full Text :
https://doi.org/10.1002/chem.201701821