Back to Search
Start Over
Optimal Newton–Secant like methods without memory for solving nonlinear equations with its dynamics.
- Source :
-
International Journal of Computer Mathematics . Sep2017, Vol. 94 Issue 9, p1759-1777. 19p. - Publication Year :
- 2017
-
Abstract
- We construct two optimal Newton–Secant like iterative methods for solving nonlinear equations. The proposed classes have convergence order four and eight and cost only three and four function evaluations per iteration, respectively. These methods support the Kung and Traub conjecture and possess a high computational efficiency. The new methods are illustrated by numerical experiments and a comparison with some existing optimal methods. We conclude with an investigation of the basins of attraction of the solutions in the complex plane. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00207160
- Volume :
- 94
- Issue :
- 9
- Database :
- Academic Search Index
- Journal :
- International Journal of Computer Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- 123828663
- Full Text :
- https://doi.org/10.1080/00207160.2016.1227800