Back to Search Start Over

High efficiency of isopropanol combustion over cobalt oxides modified ZSM-5 zeolite membrane catalysts on paper-like stainless steel fibers.

Authors :
Wang, Tao
Zhang, Huiping
Yan, Ying
Source :
Journal of Solid State Chemistry. Jul2017, Vol. 251, p55-60. 6p.
Publication Year :
2017

Abstract

Catalytic performances of isopropanol combustion and bed pressure drop in structured fixed bed reactor composed of cobalt oxides modified ZSM-5 zeolite membrane catalysts on paper-like stainless steel fibers (Co/ZSM-5/PSSF) and traditional granular ZSM-5 zeolites catalysts were investigated in this paper. Both of the catalyst samples were fabricated by wetness impregnation method and were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometer (EDS) mapping and the N 2 adsorption/desorption isotherm analyses. The result of EDS mapping revealed that cobalt oxides dispersed well on ZSM-5/PSSF. The Co/ZSM-5/PSSF catalyst display superior catalytic activity to granular Co/ZSM-5 catalyst, 50% and 90% isopropanol conversion temperatures over Co/ZSM-5/PSSF reduced 107 °C and 51 °C, respectively, compared with those over granular Co/ZSM-5 catalysts. The apparent activation energy for isopropanol combustion over Co/ZSM-5/PSSF (90 kJ/mol) was much lower than that over granular Co/ZSM-5 (134 kJ/mol). When the face velocity increased to 14.9 cm/s, the bed pressure drop of reactor filled with only Co/ZSM-5/PSSF catalysts was 9.5% of that of reactor filled with only granular Co/ZSM-5 catalysts. The ZSM-5 zeolite membrane on paper-like stainless steel fibers support provide good dispersion for cobalt oxides and Co/ZSM-5/PSSF show superior catalytic efficiency of isopropanol combustion and produced lower bed pressure drop in reactor compared with granular ZSM-5 zeolites. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00224596
Volume :
251
Database :
Academic Search Index
Journal :
Journal of Solid State Chemistry
Publication Type :
Academic Journal
Accession number :
123161151
Full Text :
https://doi.org/10.1016/j.jssc.2017.04.003