Back to Search Start Over

Crystal structure of the human alkaline sphingomyelinase provides insights into substrate recognition.

Authors :
Gorelik, Alexei
Fangyu Liu
Illes, Katalin
Nagar, Bhushan
Source :
Journal of Biological Chemistry. 4/28/2017, Vol. 292 Issue 17, p7087-7094. 8p.
Publication Year :
2017

Abstract

Absorption of dietary sphingomyelin (SM) requires its initial degradation into ceramide, a process catalyzed by the intestinal enzyme alkaline sphingomyelinase (alk-SMase, NPP7, ENPP7). alk-SMase belongs to the nucleotide pyrophosphatase/phosphodiesterase (NPP) family, the members of which hydrolyze nucleoside phosphates, phospholipids, and other related molecules. NPP7 is the only paralog that can cleave SM, and its activity requires the presence of bile salts, a class of physiological anionic detergents. To elucidate the mechanism of substrate recognition, we determined the crystal structure of human alk- SMase in complex with phosphocholine, a reaction product. Although the overall fold and catalytic center are conserved relative to other NPPs, alk-SMase recognizes the choline moiety of its substrates via an NPP7-specific aromatic box composed of tyrosine residues. Mutational analysis and enzymatic activity assays identified features on the surface of the protein--a cationic patch and a unique hydrophobic loop--that are essential for accessing SM in bile salt micelles. These results shed new light on substrate specificity determinants within the NPP enzyme family. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219258
Volume :
292
Issue :
17
Database :
Academic Search Index
Journal :
Journal of Biological Chemistry
Publication Type :
Academic Journal
Accession number :
122805214
Full Text :
https://doi.org/10.1074/jbc.M116.769273