Back to Search
Start Over
Basis-neutral Hilbert-space analyzers.
- Source :
-
Scientific Reports . 3/31/2017, p44995. 1p. - Publication Year :
- 2017
-
Abstract
- Interferometry is one of the central organizing principles of optics. Key to interferometry is the concept of optical delay, which facilitates spectral analysis in terms of time-harmonics. In contrast, when analyzing a beam in a Hilbert space spanned by spatial modes - a critical task for spatial-mode multiplexing and quantum communication - basis-specific principles are invoked that are altogether distinct from that of 'delay'. Here, we extend the traditional concept of temporal delay to the spatial domain, thereby enabling the analysis of a beam in an arbitrary spatial-mode basis - exemplified using Hermite-Gaussian and radial Laguerre-Gaussian modes. Such generalized delays correspond to optical implementations of fractional transforms; for example, the fractional Hankel transform is the generalized delay associated with the space of Laguerre-Gaussian modes, and an interferometer incorporating such a 'delay' obtains modal weights in the associated Hilbert space. By implementing an inherently stable, reconfigurable spatial-light-modulator-based polarization-interferometer, we have constructed a 'Hilbert-space analyzer' capable of projecting optical beams onto any modal basis. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20452322
- Database :
- Academic Search Index
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- 122261258
- Full Text :
- https://doi.org/10.1038/srep44995