Back to Search
Start Over
Exploring the Antitumor Mechanism of High-Dose Cytarabine through the Metabolic Perturbations of Ribonucleotide and Deoxyribonucleotide in Human Promyelocytic Leukemia HL-60 Cells.
- Source :
-
Molecules . Mar2017, Vol. 22 Issue 3, p499. 10p. 2 Diagrams, 2 Charts, 3 Graphs. - Publication Year :
- 2017
-
Abstract
- Despite the apparent clinical benefits of high-dose cytarabine (Ara-C) over lower dose Ara-C in acute myeloid leukemia (AML) therapy, the mechanism behind high-dose Ara-C therapy remains uncertain. In this study, a LC-MS-based method was carried out to investigate the metabolic alteration of ribonucleotide and deoxyribonucleotide in human promyelocytic leukemia cells (HL-60) after treatment with Ara-C to reveal its antitumor mechanism. The metabolic results revealed that four nucleotides (ATP, ADP, CDP, and dCTP) could be used as potential biomarkers indicating the benefit of high-dose Ara-C over lower dose Ara-C treatment. Combining metabolic perturbation and cell cycle analysis, we conjectured that, apart from the acknowledged mechanism of Ara-C on tumor inhibition, high-dose Ara-C could present a specific action pathway. It was suggested that the pronounced rise in AMP/ATP ratio induced by high-dose Ara-C can trigger AMP-activated protein kinase (AMPK) and subsequently Forkhead Box, class O (FoxO), to promote cell cycle arrest. Moreover, the significant decrease in CDP pool induced by high-dose Ara-C might further accelerate the reduction of dCTP, which then aggravates DNA synthesis disturbance. As a result, all of these alterations led to heightened tumor inhibition. This study provides new insight in the investigation of potential mechanisms in the clinical benefits of high-dose Ara-C in therapy for AML. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 14203049
- Volume :
- 22
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- Molecules
- Publication Type :
- Academic Journal
- Accession number :
- 122142194
- Full Text :
- https://doi.org/10.3390/molecules22030499