Back to Search
Start Over
Modeling and Robust Low Level Control of an Omnidirectional Mobile Robot.
- Source :
-
Journal of Dynamic Systems, Measurement, & Control . Apr2017, Vol. 139 Issue 4, p1-9. 9p. - Publication Year :
- 2017
-
Abstract
- This paper presents the modeling and robust low-level control design of a redundant mobile robot with four omnidirectional wheels, the iSense Robotic (iSRob) platform, that was designed to test safe control algorithms. iSRob is a multivariable nonlinear system subject to parameter uncertainties mainly due to friction forces. A multilinear model is proposed to approximate the behavior of the system, and the parameters of these models are estimated from closed-loop experimental data applying Gauss-Newton techniques. A robust control technique, quantitative feedback theory (QFT), is applied to design a proportional-integral (PI) controller for robust low-level control of the iSRob system, being this the main contribution of the paper. The designed controller is implemented, tested, and compared with a gain-scheduling PI-controller based on pole assignment. The experimental results show that robust stability and control effort margins against system uncertainties are satisfied and demonstrate better performance than the other controllers used for comparison. [ABSTRACT FROM AUTHOR]
- Subjects :
- *ALGORITHMS
*MOBILE robots
*FRICTION
Subjects
Details
- Language :
- English
- ISSN :
- 00220434
- Volume :
- 139
- Issue :
- 4
- Database :
- Academic Search Index
- Journal :
- Journal of Dynamic Systems, Measurement, & Control
- Publication Type :
- Academic Journal
- Accession number :
- 121533266
- Full Text :
- https://doi.org/10.1115/1.4035089