Back to Search Start Over

Synthesis of Mono- and Di-Glucosides of Zearalenone and α-/β-Zearalenol by Recombinant Barley Glucosyltransferase HvUGT14077.

Authors :
Michlmayr, Herbert
Varga, Elisabeth
Lupi, Francesca
Malachová, Alexandra
Hametner, Christian
Berthiller, Franz
Adam, Gerhard
Source :
Toxins. Feb2017, Vol. 9 Issue 2, p58. 23p.
Publication Year :
2017

Abstract

Zearalenone (ZEN) is an estrogenic mycotoxin occurring in Fusarium-infected cereals. Glucosylation is an important plant defense mechanism and generally reduces the acute toxicity of mycotoxins to humans and animals. Toxicological information about ZEN-glucosides is limited due to the unavailability of larger amounts required for animal studies. HvUGT14077, a recently-validated ZEN-conjugating barley UDP-glucosyltransferase was expressed in Escherichia coli, affinity purified, and characterized. HvUGT14077 possesses high affinity (Km = 3 μM) and catalytic efficiency (kcat/Km = 190 s-1·mM-1) with ZEN. It also efficiently glucosylates the phase-I ZEN-metabolites α-zearalenol and β-zearalenol, with kcat/Km of 40 and 74 s-1·mM-1, respectively. HvUGT14077 catalyzes O-glucosylation at C-14 and C-16 with preference of 14-glucoside synthesis. Furthermore, relatively slow consecutive formation of 14,16-di-glucosides was observed; their structures were tentatively identified by mass spectrometry and for ZEN-14,16-di-glucoside confirmed by nuclear magnetic resonance spectroscopy. Recombinant HvUGT14077 allowed efficient preparative synthesis of ZEN-glucosides, yielding about 90% ZEN-14-glucoside and 10% ZEN-16-glucoside. The yield of ZEN-16-glucoside could be increased to 85% by co-incubation with a β-glucosidase highly selective for ZEN-14-glucoside. Depletion of the co-substrate UDP-glucose was counteracted by a sucrose synthase based regeneration system. This strategy could also be of interest to increase the yield of minor glucosides synthesized by other glucosyltransferases. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20726651
Volume :
9
Issue :
2
Database :
Academic Search Index
Journal :
Toxins
Publication Type :
Academic Journal
Accession number :
121433130
Full Text :
https://doi.org/10.3390/toxins9020058