Back to Search Start Over

Statistical Distance Estimation Algorithms With RSS Measurements for Indoor LTE-A Networks.

Authors :
Chen, Chien-Hua
Feng, Kai-Ten
Source :
IEEE Transactions on Vehicular Technology. Feb2017, Vol. 66 Issue 2, p1709-1722. 14p.
Publication Year :
2017

Abstract

An indoor base station (BS), such as a remote radio head or home eNodeB, is a cost-effective solution to achieve ubiquitous access and positioning functions in indoor Long-Term Evolution Advanced (LTE-A) networks. In this paper, two distance estimation algorithms adopt received signal strength (RSS) to estimate the corresponding distance between a BS and a mobile station. The statistical inference distance estimation (SIDE) algorithm is proposed to provide a consistent distance estimator when the particle number is larger than an inferential theoretic lower bound given a confidence level and an error constraint. Moreover, the particle-based distance estimation (PDE) algorithm is proposed to estimate distance information with the technique of particle filtering under mixed line-of-sight (LOS) and non-line-of-sight (NLOS) conditions in indoor LTE-A networks. Furthermore, the theoretic Cramér–Rao lower bound (CRLB), considering the variations from fading effects and time-variant channels, is derived as a benchmark to evaluate the precision of distance estimators. The performance of the proposed SIDE algorithm is verified through simulations, and the results fulfill the requirements of different confidence levels and error constraints. Furthermore, the proposed PDE algorithm outperforms other distance estimation schemes and reveals robustness against mixed-sight and time-variant indoor LTE-A networks. [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
00189545
Volume :
66
Issue :
2
Database :
Academic Search Index
Journal :
IEEE Transactions on Vehicular Technology
Publication Type :
Academic Journal
Accession number :
121300905
Full Text :
https://doi.org/10.1109/TVT.2016.2558625