Back to Search Start Over

A central role for calcineurin in protein misfolding neurodegenerative diseases.

Authors :
Shah, Syed
Hussain, Tariq
Zhao, Deming
Yang, Lifeng
Source :
Cellular & Molecular Life Sciences. Mar2017, Vol. 74 Issue 6, p1061-1074. 14p.
Publication Year :
2017

Abstract

Accumulation of misfolded/unfolded aggregated proteins in the brain is a hallmark of many neurodegenerative diseases affecting humans and animals. Dysregulation of calcium (Ca) and disruption of fast axonal transport (FAT) are early pathological events that lead to loss of synaptic integrity and axonal degeneration in early stages of neurodegenerative diseases. Dysregulated Ca in the brain is triggered by accumulation of misfolded/unfolded aggregated proteins in the endoplasmic reticulum (ER), a major Ca storing organelle, ultimately leading to neuronal dysfunction and apoptosis. Calcineurin (CaN), a Ca/calmodulin-dependent serine/threonine phosphatase, has been implicated in T cells activation through the induction of nuclear factor of activated T cells (NFAT). In addition to the involvement of several other signaling cascades, CaN has been shown to play a role in early synaptic dysfunction and neuronal death. Therefore, inhibiting hyperactivated CaN in early stages of disease might be a promising therapeutic strategy for treating patients with protein misfolding diseases. In this review, we briefly summarize the structure of CaN, inhibition mechanisms by which immunosuppressants inhibit CaN, role of CaN in maintaining neuronal and synaptic integrity and homeostasis and the role played by CaN in protein unfolding/misfolding neurodegenerative diseases. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1420682X
Volume :
74
Issue :
6
Database :
Academic Search Index
Journal :
Cellular & Molecular Life Sciences
Publication Type :
Academic Journal
Accession number :
121263329
Full Text :
https://doi.org/10.1007/s00018-016-2379-7