Back to Search Start Over

Multisensory integration in the developing tectum is constrained by the balance of excitation and inhibition.

Authors :
Felch, Daniel L.
Khakhalin, Arseny S.
Aizenman, Carlos D.
Source :
eLife. 2016, p1-19. 19p.
Publication Year :
2016

Abstract

Multisensory integration (MSI) is the process that allows the brain to bind together spatiotemporally congruent inputs from different sensory modalities to produce single salient representations. While the phenomenology of MSI in vertebrate brains is well described, relatively little is known about cellular and synaptic mechanisms underlying this phenomenon. Here we use an isolated brain preparation to describe cellular mechanisms underlying development of MSI between visual and mechanosensory inputs in the optic tectum of Xenopus tadpoles. We find MSI is highly dependent on the temporal interval between crossmodal stimulus pairs. Over a key developmental period, the temporal window for MSI significantly narrows and is selectively tuned to specific interstimulus intervals. These changes in MSI correlate with developmental increases in evoked synaptic inhibition, and inhibitory blockade reverses observed developmental changes in MSI. We propose a model in which development of recurrent inhibition mediates development of temporal aspects of MSI in the tectum. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2050084X
Database :
Academic Search Index
Journal :
eLife
Publication Type :
Academic Journal
Accession number :
120886840
Full Text :
https://doi.org/10.7554/eLife.15600