Back to Search
Start Over
Direct Yaw-Moment Control of All-Wheel-Independent-Drive Electric Vehicles with Network-Induced Delays through Parameter-Dependent Fuzzy SMC Approach.
- Source :
-
Mathematical Problems in Engineering . 1/22/2017, p1-15. 15p. - Publication Year :
- 2017
-
Abstract
- This paper investigates the robust direct yaw-moment control (DYC) through parameter-dependent fuzzy sliding mode control (SMC) approach for all-wheel-independent-drive electric vehicles (AWID-EVs) subject to network-induced delays. AWID-EVs have obvious advantages in terms of DYC over the traditional centralized-drive vehicles. However it is one of the most principal issues for AWID-EVs to ensure the robustness of DYC. Furthermore, the network-induced delays would also reduce control performance of DYC and even deteriorate the EV system. To ensure robustness of DYC and deal with network-induced delays, a parameter-dependent fuzzy sliding mode control (FSMC) method based on the real-time information of vehicle states and delays is proposed in this paper. The results of cosimulations with Simulink® and CarSim® demonstrate the effectiveness of the proposed controller. Moreover, the results of comparison with a conventional FSMC controller illustrate the strength of explicitly dealing with network-induced delays. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 1024123X
- Database :
- Academic Search Index
- Journal :
- Mathematical Problems in Engineering
- Publication Type :
- Academic Journal
- Accession number :
- 120861631
- Full Text :
- https://doi.org/10.1155/2017/5170492