Back to Search
Start Over
TSP1-CD47 signaling is upregulated in clinical pulmonary hypertension and contributes to pulmonary arterial vasculopathy and dysfunction.
- Source :
-
Cardiovascular Research . 1/1/2017, Vol. 113 Issue 1, p15-29. 15p. - Publication Year :
- 2017
-
Abstract
- Aims: Thrombospondin-1 (TSP1) is a ligand for CD47 and TSP1-/- mice are protected from pulmonary hypertension (PH). We hypothesized the TSP1-CD47 axis is upregulated in human PH and promotes pulmonary arterial vasculopathy. Methods and results: We analyzed the molecular signature and functional response of lung tissue and distal pulmonary arteries (PAs) from individuals with (n=23) and without (n=16) PH. Compared with controls, lungs and distal PAs from PH patients showed induction of TSP1-CD47 and endothelin-1/endothelin A receptor (ET-1/ETA) protein and mRNA. In control PAs, treatment with exogenous TSP1 inhibited vasodilation and potentiated vasoconstriction to ET-1. Treatment of diseased PAs from PH patients with a CD47 blocking antibody improved sensitivity to vasodilators. Hypoxic wild type (WT) mice developed PH and displayed upregulation of pulmonary TSP1, CD47, and ET-1/ETA concurrent with down regulation of the transcription factor cell homolog of the v-myc oncogene (cMyc). In contrast, PH was attenuated in hypoxic CD47-/- mice while pulmonary TSP1 and ET-1/ETA were unchanged and cMyc was overexpressed. In CD47-/- pulmonary endothelial cells cMyc was increased and ET-1 decreased. In CD47+/+cells, forced induction of cMyc suppressed ET-1 transcript, whereas suppression of cMyc increased ET-1 signaling. Furthermore, disrupting TSP1-CD47 signaling in pulmonary smooth muscle cells abrogated ET-1-stimulated hypertrophy. Finally, a CD47 antibody given 2 weeks after monocrotaline challenge in rats upregulated pulmonary cMyc and improved aberrations in PH-associated cardiopulmonary parameters. Conclusions: In pre-clinical models of PH CD47 targets cMyc to increase ET-1 signaling. In clinical PH TSP1-CD47 is upregulated, and in both, contributes to pulmonary arterial vasculopathy and dysfunction. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00086363
- Volume :
- 113
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Cardiovascular Research
- Publication Type :
- Academic Journal
- Accession number :
- 120696983
- Full Text :
- https://doi.org/10.1093/cvr/cvw218