Back to Search Start Over

Quaternary redox transitions in deep crystalline rock fractures at the western margin of the Greenland ice sheet.

Authors :
Drake, Henrik
Suksi, Juhani
Tullborg, Eva-Lena
Lahaye, Yann
Source :
Applied Geochemistry. Jan2017, Vol. 76, p196-209. 14p.
Publication Year :
2017

Abstract

When planning for long term deep geological repositories for spent nuclear fuel knowledge of processes that will influence and change the sub-surface environment is crucial. For repositories in northern Europe and similar areas, influence from advancing and retreating continental ice sheets must be planned for. Rapid transport of meltwater into the bedrock may introduce oxic conditions at great depth, which may affect the copper canisters planned to encapsulate the spent fuel. The lack of direct observations has led to simplified modelling assumptions not reflecting the complexity of natural systems. As part of a unique field and modelling study, The Greenland Analogue Project, of a continental ice sheet and related sub-surface conditions, we here present mineralogical and U-series data unravelling the Quaternary redox history in the deep bedrock fracture system close to the margin of the Greenland ice sheet. The aim was to increase the understanding of circulation of potentially oxygenated glacial meltwater from the surface down to 650 m depth. Secondary mineral coatings were sampled from open fractures in cored boreholes down to 650 m, within and below the current permafrost. Despite continental ice sheet coverage and/or prevailing permafrost during large parts of the last 1 Ma, measured disequilibrium in the 238 U- 234 U- 230 Th system shows that water has circulated in the bedrock fracture system at various occasions during this time span. In fractures of the upper 60 m, infiltration of oxygenated surface water has resulted in a prominent near-surface ”oxidised zone” with abundant FeOOH precipitation. However, this zone must be relict because it is currently within permafrost and the U-series disequilibrium signatures of most fracture coatings show evidence of deposition of U prior to the Holocene and even prior to the last glaciation maximum which occurred less than 100 ka ago. This U deposition is found both within and below the near surface “oxidised zone” indicating temporal redox variation within this zone during the last 1 Ma. Potential Holocene leaching of U is indicated by 230 Th/ 238 U≫1 and close to secular equilibrium for 234 U/ 238 U in some of the near surface fractures and also in a couple of deeper fractures. Indicated U-leaching in the talik within the last 200 ka is proposed to be the result of talik-related discharge of water with a capability of keeping U in solution. Circulation of oxidative water in the deep system beneath the permafrost is indicated only in a few fractures and solely by U-series disequilibrium ( 230 Th/ 238 U activity ratios up to 2.97 at 431 m depth), probably due to restricted, perhaps sporadic infiltration of oxidative water, potentially during the Holocene. In these fractures, the conditions have in general been more reducing than in the near surface system where oxidising conditions have prevailed and penetration of oxygenated waters may have been continuous. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08832927
Volume :
76
Database :
Academic Search Index
Journal :
Applied Geochemistry
Publication Type :
Academic Journal
Accession number :
120321475
Full Text :
https://doi.org/10.1016/j.apgeochem.2016.12.001