Back to Search Start Over

GAPDH-mediated posttranscriptional regulations of sodium channel Scn1a and Scn3a genes under seizure and ketogenic diet conditions.

Authors :
Lin, Guo-Wang
Lu, Ping
Zeng, Tao
Tang, Hui-Ling
Chen, Yong-Hong
Liu, Shu-Jing
Gao, Mei-Mei
Zhao, Qi-Hua
Yi, Yong-Hong
Long, Yue-Sheng
Source :
Neuropharmacology. Feb2017 Part A, Vol. 113, p480-489. 10p.
Publication Year :
2017

Abstract

Abnormal expressions of sodium channel SCN1A and SCN3A genes alter neural excitability that are believed to contribute to the pathogenesis of epilepsy, a long-term risk of recurrent seizures. Ketogenic diet (KD), a high-fat and low-carbohydrate treatment for difficult-to-control (refractory) epilepsy in children, has been suggested to reverse gene expression patterns. Here, we reveal a novel role of GAPDH on the posttranscriptional regulation of mouse Scn1a and Scn3a expressions under seizure and KD conditions. We show that GAPDH binds to a conserved region in the 3′ UTRs of human and mouse SCN1A and SCN3A genes, which decreases and increases genes' expressions by affecting mRNA stability through SCN1A 3′ UTR and SCN3A 3′ UTR, respectively. In seizure mice, the upregulation and phosphorylation of GAPDH enhance its binding to the 3′ UTR, which lead to downregulation of Scn1a and upregulation of Scn3a . Furthermore, administration of KD generates β-hydroxybutyric acid which rescues the abnormal expressions of Scn1a and Scn3a by weakening the GAPDH's binding to the element. Taken together, these data suggest that GAPDH-mediated expression regulation of sodium channel genes may be associated with epilepsy and the anticonvulsant action of KD. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00283908
Volume :
113
Database :
Academic Search Index
Journal :
Neuropharmacology
Publication Type :
Academic Journal
Accession number :
120015821
Full Text :
https://doi.org/10.1016/j.neuropharm.2016.11.002