Back to Search Start Over

The effects of surface conditions of TiO2 thin film on the UV assisted sensing response at room temperature.

Authors :
Xie, Ting
Rani, Asha
Wen, Baomei
Castillo, Audie
Thomson, Brian
Debnath, Ratan
Murphy, Thomas E.
Gomez, R.D.
Motayed, Abhishek
Source :
Thin Solid Films. Dec2016, Vol. 620, p76-81. 6p.
Publication Year :
2016

Abstract

Thin film oxides have attracted attention in implementations of gas sensors, notably NO 2 , owing to their unique physical, optical, and chemical properties. While the properties are presumed to be strongly dependent on the surface conditions of the thin films, it is not yet clear how surface properties of the thin film gas sensor affect its analyte sensing response. Here, we report the influence of surface carbon contamination and roughness on the NO 2 sensing properties of TiO 2 thin film sensors. The TiO 2 thin films were prepared by rf-sputtering. The surface of the films were intentionally contaminated and damaged with organic polymers (photolithography resist) and microwave plasma, respectively. The surface chemistry of the films was assessed by high resolution X-ray photoelectron spectroscopy, and atomic force microscopy was exploited to obtain the morphology of the fabricated sensors. The work aims to improve the long-term efficacy of gas sensors by studying the reasons for degradation in performance. Our results indicate that the carbon residue and surface roughness of the TiO 2 based sensor prolong the NO 2 response time by roughly threefold and fivefold, respectively. The recovery rate of the sensor is deteriorated by the poor surface conditions as well. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00406090
Volume :
620
Database :
Academic Search Index
Journal :
Thin Solid Films
Publication Type :
Academic Journal
Accession number :
119965041
Full Text :
https://doi.org/10.1016/j.tsf.2016.07.075