Back to Search Start Over

A Clinical Wide-Field Fluorescence Endoscopic Device for Molecular Imaging Demonstrating Cathepsin Protease Activity in Colon Cancer.

Authors :
Sensarn, Steven
Zavaleta, Cristina
Segal, Ehud
Rogalla, Stephan
Lee, Wansik
Gambhir, Sanjiv
Bogyo, Matthew
Contag, Christopher
Zavaleta, Cristina L
Gambhir, Sanjiv S
Contag, Christopher H
Source :
Molecular Imaging & Biology. Dec2016, Vol. 18 Issue 6, p820-829. 10p.
Publication Year :
2016

Abstract

<bold>Purpose: </bold>Early and effective detection of cancers of the gastrointestinal tract will require novel molecular probes and advances in instrumentation that can reveal functional changes in dysplastic and malignant tissues. Here, we describe adaptation of a wide-field clinical fiberscope to perform wide-field fluorescence imaging while preserving its white-light capability for the purpose of providing wide-field fluorescence imaging capability to point-of-care microscopes.<bold>Procedures: </bold>We developed and used a fluorescent fiberscope to detect signals from a quenched probe, BMV109, that becomes fluorescent when cleaved by, and covalently bound to, active cathepsin proteases. Cathepsins are expressed in inflammation- and tumor-associated macrophages as well as directly from tumor cells and are a promising target for cancer imaging. The fiberscope has a 1-mm outer diameter enabling validation via endoscopic exams in mice, and therefore we evaluated topically applied BMV109 for the ability to detect colon polyps in an azoxymethane-induced colon tumor model in mice.<bold>Results: </bold>This wide-field endoscopic imaging device revealed consistent and clear fluorescence signals from BMV109 that specifically localized to the polypoid regions as opposed to the normal adjacent colon tissue (pā€‰<ā€‰0.004) in the murine colon carcinoma model.<bold>Conclusions: </bold>The sensitivity of detection of BMV109 with the fluorescence fiberscope suggested utility of these tools for early detection at hard-to-reach sites. The fiberscope was designed to be used in conjunction with miniature, endoscope-compatible fluorescence microscopes for dual wide-field and microscopic cancer detection. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15361632
Volume :
18
Issue :
6
Database :
Academic Search Index
Journal :
Molecular Imaging & Biology
Publication Type :
Academic Journal
Accession number :
119233703
Full Text :
https://doi.org/10.1007/s11307-016-0956-7