Back to Search
Start Over
Computational study of a magnetic design to improve the diagnosis of malaria: 2D model.
- Source :
-
Journal of Magnetism & Magnetic Materials . Feb2017, Vol. 423, p301-305. 5p. - Publication Year :
- 2017
-
Abstract
- This paper investigates the feasibility of a cost effective high gradient magnetic separation based device for the detection and identification of malaria parasites in a blood sample. The design utilizes magnetic properties of hemozoin present in malaria-infected red blood cells (mRBCs) in order to separate and concentrate them inside a microfluidic channel slide for easier examination under the microscope. The design consists of a rectangular microfluidic channel with multiple magnetic wires positioned on top of and underneath it along the length of the channel at a small angle with respect to the channel axis. Strong magnetic field gradients, produced by the wires, exert sufficient magnetic forces on the mRBCs in order to separate and concentrate them in a specific region small enough to fit within the microscope field of view at magnifications typically required to identify the malaria parasite type. The feasibility of the device is studied using a model where the trajectories of the mRBCs inside the channel are determined using first-order ordinary differential equations (ODEs) solved numerically using a multistep ODE solver available within MATLAB. The mRBCs trajectories reveal that it is possible to separate and concentrate the mRBCs in less than 5 min, even in cases of very low parasitemia (1–10 parasites/µL of blood) using blood sample volumes of around 3 µL employed today. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 03048853
- Volume :
- 423
- Database :
- Academic Search Index
- Journal :
- Journal of Magnetism & Magnetic Materials
- Publication Type :
- Academic Journal
- Accession number :
- 119187980
- Full Text :
- https://doi.org/10.1016/j.jmmm.2016.09.101