Back to Search Start Over

Analytical investigation on mechanical buckling of FGM truncated conical shells reinforced by orthogonal stiffeners based on FSDT.

Authors :
Van Dung, Dao
Chan, Do Quang
Source :
Composite Structures. Jan2017, Vol. 159, p827-841. 15p.
Publication Year :
2017

Abstract

This work presents an analytical investigation for analyzing the mechanical buckling of truncated conical shells made of functionally graded materials, subjected to axial compressive load and external uniform pressure. Shells are reinforced by closely spaced stringers and rings. The change of spacing between stringers in the meridional direction also is taken into account. Using the adjacent equilibrium criterion, the first order shear deformation theory (FSDT) and Lekhnitskii smeared stiffener technique, the linearization stability equations have been established. The resulting equations which they are the system of five variable coefficient partial differential equations in terms of displacement components are investigated by Galerkin method. The closed-form expression for determining the critical buckling load is obtained. The effects of material properties, dimensional parameters, stiffeners and semi-vertex angle on buckling behaviors of shell are considered. Shown that for thick conical shells, the use of FSDT for determining their critical buckling load is necessary and more suitable. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02638223
Volume :
159
Database :
Academic Search Index
Journal :
Composite Structures
Publication Type :
Academic Journal
Accession number :
119159921
Full Text :
https://doi.org/10.1016/j.compstruct.2016.10.006