Back to Search Start Over

Combination effects of arsenic trioxide and fibroblast growth factor receptor inhibitor in squamous cell lung carcinoma.

Authors :
Lam, Sze-Kwan
Leung, Leanne Lee
Li, Yuan-Yuan
Zheng, Chun-Yan
Ho, James Chung-Man
Source :
Lung Cancer (01695002). Nov2016, Vol. 101, p111-119. 9p.
Publication Year :
2016

Abstract

Objectives Lung cancer remains the top cancer killer worldwide, with squamous cell carcinoma (SCC) as the second commonest histologic subtype. Arsenic trioxide (ATO) was previously shown to suppress growth of lung cancer. Fibroblast growth factor receptor (FGFR) amplification was recently demonstrated in lung SCC, with specific FGFR inhibitor (e.g. PD173074) developed as a potential targeted therapy. Therefore the combination effects of ATO and PD173074 in SCC was studied. Materials and methods The combination of ATO/PD173074 was studied in a proof-of-principle model using a lung SCC cell line with FGFR1 overexpression: SK-MES-1. The effects of ATO and/or PD173074 on cell viability and protein expression were studied by MTT assay and Western blot respectively. Cell cycle analysis, phosphatidylserine externalization and mitochondrial membrane depolarization were monitored by flow cytometry. FGFR1 knockdown was performed with siRNAs. Proteasome inhibitor (MG-132) was used to study the degradation mechanism. In vivo effect of ATO and/or PD173074 was investigated using a nude mice xenograft model. Results Combined ATO/PD173074 reduced cell viability along with increased sub-G1 population, phosphatidylserine externalization and mitochondrial membrane depolarization more significantly than single treatments. Downregulation of FGFR1, p-Akt, Akt, p-Src, Src, p-c-Raf, c-Raf, Erk and survivin as well as upregulation of p-Erk and cleaved PARP were observed upon ATO and/or PD treatment. MG-132 partially reversed the degradation of Akt, Src, c-Raf and Erk induced by ATO/PD, suggestive of ubiquitin-independent proteasome-dependent degradation. However, the mechanism of FGFR1 downregulation remained unknown. Downregulation of FGFR1, Akt, Src, c-Raf and Erk as well as cleaved PARP elevation induced by ATO and/or PD were confirmed in vivo . Conclusion Massive protein degradation (FGFR1, Akt, Src, c-Raf and Erk) was induced by ATO and/or PD173074 treatment mainly mediated by activation of proteasomal degradation in SCC cell line SK-MES-1 in vitro and in vivo . [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01695002
Volume :
101
Database :
Academic Search Index
Journal :
Lung Cancer (01695002)
Publication Type :
Academic Journal
Accession number :
119096024
Full Text :
https://doi.org/10.1016/j.lungcan.2016.10.001