Back to Search
Start Over
Commutativite´ des ope´rateurs diffe´rentiels sur l'espace des repre´sentations restreintes d'un groupe de Lie nilpotent
- Source :
-
Journal de Mathematiques Pures et Appliquees . Jan2004, Vol. 83 Issue 1, p137. 25p. - Publication Year :
- 2004
-
Abstract
- Let <f>G</f> be a connected simply connected nilpotent Lie group, <f>K</f> an analytic subgroup of <f>G</f> and <f>π</f> a unitary and irreducible representation of <f>G</f>. We study the algebra <f>Dπ(G)K</f> of differential operators keeping invariant the space of <f>C+∞</f> vectors of <f>π</f> and commuting with the action of <f>K</f> on that space. We show that the commutativity of <f>Dπ(G)K</f> is equivalent to the fact that representation <f>π|K</f> has finite multiplicities. We also study the commutativity of the centralizer of a subalgebra. [Copyright &y& Elsevier]
- Subjects :
- *NILPOTENT groups
*ALGEBRA
*DIFFERENTIAL operators
*COMMUTATIVE algebra
Subjects
Details
- Language :
- French
- ISSN :
- 00217824
- Volume :
- 83
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Journal de Mathematiques Pures et Appliquees
- Publication Type :
- Academic Journal
- Accession number :
- 11885993
- Full Text :
- https://doi.org/10.1016/S0021-7824(03)00063-1