Back to Search Start Over

Age-dependent changes in the glutamate-nitric oxide pathway in the hippocampus of the triple transgenic model of Alzheimer's disease: implications for neurometabolic regulation.

Authors :
Dias, Cândida
Lourenço, Cátia F.
Ferreiro, Elisabete
Barbosa, Rui M.
Laranjinha, João
Ledo, Ana
Source :
Neurobiology of Aging. Oct2016, Vol. 46, p84-95. 12p.
Publication Year :
2016

Abstract

Age-dependent changes in nitric oxide ( • NO) concentration dynamics may play a significant role in both decaying synaptic and metabolic functions in Alzheimer's disease (AD). This neuromodulator acts presynaptically to increase vesicle release and glutamatergic transmission and also regulates mitochondrial function. Under conditions of altered intracellular redox environment, • NO may react and produce reactive species such as peroxynitrite. Using the triple transgenic mouse model of AD (3xTgAD), we investigated age-dependent changes in the glutamate- • NO axis in the hippocampus. Direct measurement of • NO concentration dynamics revealed a significant increase in N -methyl-D-aspartate type receptor–evoked peak • NO in the 3xTgAD model at an early age. Aging produced a decrease in peak • NO accompanied by significant decrease in production and decay rates in the transgenic model. Evaluation of energy metabolism revealed age-dependent decrease in basal oxygen consumption rate, a general decrease in mitochondrial oxidative phosphorylation parameters, and loss in mitochondrial sparing capacity in both genotypes. Finally, we observed age-dependent increase in 3-nitrotyrosine residues in the hippocampus, consistent with a putative shift in • NO bioactivity toward oxidative chemistry associated with neurotoxicity. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01974580
Volume :
46
Database :
Academic Search Index
Journal :
Neurobiology of Aging
Publication Type :
Academic Journal
Accession number :
117939405
Full Text :
https://doi.org/10.1016/j.neurobiolaging.2016.06.012