Back to Search Start Over

Magnesium deficiency decreases biomass water-use efficiency and increases leaf water-use efficiency and oxidative stress in barley plants.

Authors :
Tränkner, Merle
Jákli, Bálint
Tavakol, Ershad
Geilfus, Christoph-Martin
Cakmak, Ismail
Dittert, Klaus
Senbayram, Mehmet
Source :
Plant & Soil. Sep2016, Vol. 406 Issue 1/2, p409-423. 15p.
Publication Year :
2016

Abstract

Aims: In water-scarce agro-environments a clear understanding of how plant nutrients like magnesium (Mg) affect plant traits related to water-use efficiency (WUE) is of great importance. Magnesium plays a crucial role in photosynthesis and is thus a major determinant of biomass formation. This study investigated the effect of Mg deficiency on leaf and whole plant water-use efficiency, δC composition, hydrogen peroxide (HO) production and the activity of key enzymes involved in ROS scavenging in barley. Methods: Barley ( Hordeum vulgare) was grown in hydroponic culture under three different levels of Mg supply (0.01, 0.1, 0.4 mM Mg). WUE was determined on the leaf-level (leaf-WUE), the biomass-level (biomass-WUE) and via carbon isotope discrimination (δC). Additionally, concentrations of Mg, chlorophyll and HO, and the activities of three antioxidative enzymes (ascorbate peroxidase, glutathione reductase and superoxide dismutase) in youngest fully expanded leaves were analyzed. Results: Dry matter production was significantly decreased (by 34 % compared to control) in Mg deficient barley plants. Mg deficiency also markedly reduced leaf Mg concentrations and chlorophyll concentrations, but increased HO concentrations (up to 55 % compared to control) and the activity of antioxidative enzymes. Severe Mg deficiency decreased biomass-WUE by 20 %, which was not reflected regarding leaf-WUE. In line with leaf-WUE data, discrimination against C (indicating time-integrated WUE) was significantly reduced under Mg deficiency. Conclusions: Mg deficiency increased oxidative stress indicating impairment in carbon gain and decreased biomass-WUE. Our study suggests that biomass-WUE was not primarily affected by photosynthesis-related processes, but might be dependent on effects of Mg on night-time transpiration, respiration or root exudation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0032079X
Volume :
406
Issue :
1/2
Database :
Academic Search Index
Journal :
Plant & Soil
Publication Type :
Academic Journal
Accession number :
117484283
Full Text :
https://doi.org/10.1007/s11104-016-2886-1