Back to Search Start Over

Development of a new model for predicting flyrock distance in quarry blasting: a genetic programming technique.

Authors :
Faradonbeh, Roohollah
Jahed Armaghani, Danial
Monjezi, Masoud
Source :
Bulletin of Engineering Geology & the Environment. Aug2016, Vol. 75 Issue 3, p993-1006. 14p.
Publication Year :
2016

Abstract

This research was aimed at developing a new model to predict flyrock distance based on a genetic programming (GP) technique. For this purpose, six granite quarry mines in the Johor area of Malaysia were investigated, for which various controllable blasting parameters were recorded. A total of 262 datasets consisting of six variables (i.e., powder factor, stemming length, burden-to-spacing ratio, blast-hole diameter, maximum charge per delay, and blast-hole depth) were collected applied to developing the flyrock predictive model. To identify the optimum model, several GP models were developed to predict flyrock. In the same way, using non-linear multiple regression (NLMR) analysis, various models were established to predict flyrock. Finally, to compare the performance of the developed models, regression coefficient ( R ), root mean square error (RMSE), variance account for (VAF), and simple ranking methods were computed. According to the results obtained from the test dataset, the best flyrock predictive model was found to be the GP based model, with R = 0.908, RMSE = 17.638 and VAF = 89.917, while the corresponding values for R , RMSE and VAF for the NLMR model were 0.816, 26.194, and 81.041, respectively. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14359529
Volume :
75
Issue :
3
Database :
Academic Search Index
Journal :
Bulletin of Engineering Geology & the Environment
Publication Type :
Academic Journal
Accession number :
117419848
Full Text :
https://doi.org/10.1007/s10064-016-0872-8