Back to Search Start Over

High-throughput sequencing and degradome analysis reveal altered expression of miRNAs and their targets in a male-sterile cybrid pummelo (Citrus grandis).

Authors :
Yan-Ni Fang
Bei-Bei Zheng
Lun Wang
Wei Yang
Xiao-Meng Wu
Qiang Xu
Wen-Wu Guo
Source :
BMC Genomics. 8/9/2016, Vol. 17, p1-15. 15p. 1 Color Photograph, 1 Black and White Photograph, 1 Illustration, 1 Diagram, 4 Charts, 3 Graphs.
Publication Year :
2016

Abstract

Background: G1 + HBP is a male sterile cybrid line with nuclear genome from Hirado Buntan pummelo (C. grandis Osbeck) (HBP) and mitochondrial genome from "Guoqing No.1" (G1, Satsuma mandarin), which provides a good opportunity to study male sterility and nuclear-cytoplasmic cross talk in citrus. High-throughput sRNA and degradome sequencing were applied to identify miRNAs and their targets in G1 + HBP and its fertile type HBP during reproductive development. Results: A total of 184 known miRNAs, 22 novel miRNAs and 86 target genes were identified. Some of the targets are transcription factors involved in floral development, such as auxin response factors (ARFs), SQUAMOSA promoter binding protein box (SBP-box), MYB, basic region-leucine zipper (bZIP), APETALA2 (AP2) and transport inhibitor response 1 (TIR1). Eight target genes were confirmed to be sliced by corresponding miRNAs using 5' RACE technology. Based on the sequencing abundance, 42 differentially expressed miRNAs between sterile line G1 + HBP and fertile line HBP were identified. Differential expression of miRNAs and their target genes between two lines was validated by quantitative RT-PCR, and reciprocal expression patterns between some miRNAs and their targets were demonstrated. The regulatory mechanism of miR167a was investigated by yeast one-hybrid and dual-luciferase assays that one dehydrate responsive element binding (DREB) transcription factor binds to miR167a promoter and transcriptionally repress miR167 expression. Conclusion: Our study reveals the altered expression of miRNAs and their target genes in a male sterile line of pummelo and highlights that miRNA regulatory network may be involved in floral bud development and cytoplasmic male sterility in citrus. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14712164
Volume :
17
Database :
Academic Search Index
Journal :
BMC Genomics
Publication Type :
Academic Journal
Accession number :
117399410
Full Text :
https://doi.org/10.1186/s12864-016-2882-0