Back to Search
Start Over
Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses.
- Source :
-
AIP Advances . 2016, Vol. 6 Issue 7, p075011-1-075011-8. 8p. - Publication Year :
- 2016
-
Abstract
- Ferroelectric domain inversion and its effect on the stability of lithium niobate thin films on insulator (LNOI) are experimentally characterized. Two sets of specimens with different thicknesses varying from submicron to microns are selected. For micron thick samples (∼28 μm), domain structures are achieved by pulsed electric field poling with electrodes patterned via photolithography. No domain structure deterioration has been observed for a month as inspected using polarizing optical microscopy and etching. As for submicron (540 nm) films, large-area domain inversion is realized by scanning a biased conductive tip in a piezoelectric force microscope. A graphic processing method is taken to evaluate the domain retention. A domain life time of 25.0 h is obtained and possible mechanisms are discussed. Our study gives a direct reference for domain structure-related applications of LNOI, including guiding wave nonlinear frequency conversion, nonlinear wavefront tailoring, electro-optic modulation, and piezoelectric devices. [ABSTRACT FROM AUTHOR]
- Subjects :
- *FERROELECTRIC domains
*LITHIUM niobate
*THIN films
Subjects
Details
- Language :
- English
- ISSN :
- 21583226
- Volume :
- 6
- Issue :
- 7
- Database :
- Academic Search Index
- Journal :
- AIP Advances
- Publication Type :
- Academic Journal
- Accession number :
- 117113914
- Full Text :
- https://doi.org/10.1063/1.4959197