Back to Search Start Over

Robust Observer Based Disturbance Rejection Control for Euler-Lagrange Systems.

Authors :
Zhang, Yanjun
Wang, Lu
Zhang, Jun
Su, Jianbo
Source :
Mathematical Problems in Engineering. 7/21/2016, p1-13. 13p.
Publication Year :
2016

Abstract

Robust disturbance rejection control methodology is proposed for Euler-Lagrange systems, and parameters optimization strategy for the observer is explored. First, the observer based disturbance rejection methodology is analyzed, based on which the disturbance rejection paradigm is proposed. Thus, a disturbance observer (DOB) with partial feedback linearization and a low-pass filter is proposed for nonlinear dynamic model under relaxed restrictions of the generalized disturbance. Then, the outer-loop backstepping controller is designed for desired tracking performance. Considering that the parameters of DOB cannot be obtained directly based on Lyapunov stability analysis, parameter of DOB is optimized under standard H∞ control framework. By analyzing the influence of outer-loop controller on the inner-loop observer parameter, robust stability constraint is proposed to guarantee the robust stability of the closed-loop system. Experiment on attitude tracking of an aircraft is carried out to show the effectiveness of the proposed control strategy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1024123X
Database :
Academic Search Index
Journal :
Mathematical Problems in Engineering
Publication Type :
Academic Journal
Accession number :
116933450
Full Text :
https://doi.org/10.1155/2016/3839505