Back to Search Start Over

Organization into Higher Ordered Ring Structures Counteracts Membrane Binding of IM30, a Protein Associated with Inner Membranes in Chloroplasts and Cyanobacteria.

Authors :
Heidrich, Jennifer
Wulf, Verena
Hennig, Raoul
Saur, Michael
Markl, Jürgen
Sönnichsen, Carsten
Schneider, Dirk
Source :
Journal of Biological Chemistry. 7/15/2016, Vol. 291 Issue 29, p14954-14962. 11p.
Publication Year :
2016

Abstract

The IM30 (inner membrane-associated protein of 30 kDa), also known as the Vipp1 (vesicle-inducing protein in plastids 1), has a crucial role in thylakoid membrane biogenesis and maintenance. Recent results suggest that the protein binds peripherally to membranes containing negatively charged lipids. However, although IM30 monomers interact and assemble into large oligomeric ring complexes with different numbers of monomers, it is still an open question whether ring formation is crucial for membrane interaction. Here we show that binding of IM30 rings to negatively charged phosphatidylglycerol membrane surfaces results in a higher ordered membrane state, both in the head group and in the inner core region of the lipid bilayer. Furthermore, by using gold nanorods covered with phosphatidylglycerol layers and single particle spectroscopy, we show that not only IM30 rings but also lower oligomeric IM30 structures interact with membranes, although with higher affinity. Thus, ring formation is not crucial for, and even counteracts, membrane interaction of IM30. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219258
Volume :
291
Issue :
29
Database :
Academic Search Index
Journal :
Journal of Biological Chemistry
Publication Type :
Academic Journal
Accession number :
116912216
Full Text :
https://doi.org/10.1074/jbc.M116.722686