Back to Search Start Over

Knockdown of spinal cord postsynaptic density protein-95 prevents the development of morphine tolerance in rats

Authors :
Liaw, W.-J.
Zhang, B.
Tao, F.
Yaster, M.
Johns, R.A.
Tao, Y.-X.
Source :
Neuroscience. Jan2004, Vol. 123 Issue 1, p11. 5p.
Publication Year :
2004

Abstract

The activation of spinal cord N-methyl-d-aspartate (NMDA) receptors and subsequent intracellular cascades play a pivotal role in the development of opioid tolerance. Postsynaptic density protein-95 (PSD-95), a molecular scaffolding protein, assembles a specific set of signaling proteins around NMDA receptors at neuronal synapses. The current study investigated the possible involvement of PSD-95 in the development of opioid tolerance. Opioid tolerance was induced by intrathecal injection of morphine sulfate (20 μg/10 μl) twice a day for 4 consecutive days. Co-administration of morphine twice daily and PSD-95 antisense oligodeoxynucleotide (50 μg/10 μl) once daily for 4 days not only markedly reduced the PSD-95 expression and its binding to NMDA receptors in spinal cord but also significantly prevented the development of morphine tolerance. In contrast, co-administration of morphine twice daily and PSD-95 missense oligodeoxynucleotide (50 μg/10 μl) once daily for 4 days did not produce these effects. The PSD-95 antisense oligodeoxynucleotide at the doses we used did not affect baseline response to noxious thermal stimulation or locomotor function.The present study indicates that the deficiency of spinal cord PSD-95 attenuates the development of opioid tolerance. These results suggest that PSD-95 might be involved in the central mechanisms of opioid tolerance and provide a possible new target for prevention of development of opioid tolerance. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
03064522
Volume :
123
Issue :
1
Database :
Academic Search Index
Journal :
Neuroscience
Publication Type :
Academic Journal
Accession number :
11656735
Full Text :
https://doi.org/10.1016/j.neuroscience.2003.09.007