Back to Search Start Over

Correction of MHS Viscosimetric Constants upon Numerical Simulation of Temperature Induced Degradation Kinetic of Chitosan Solutions.

Authors :
De Benedictis, Vincenzo Maria
Soloperto, Giulia
Demitri, Christian
Source :
Polymers (20734360). Jun2016, Vol. 8 Issue 6, p210. 17p. 1 Color Photograph, 1 Black and White Photograph, 5 Charts, 6 Graphs.
Publication Year :
2016

Abstract

The Mark-Houwink-Sakurada (MHS) equation allows for estimation of rheological properties, if the molecular weight is known along with good understanding of the polymer conformation. The intrinsic viscosity of a polymer solution is related to the polymer molecular weight according to the MHS equation, where the value of the constants is related to the specific solvent and its concentration. However, MHS constants do not account for other characteristics of the polymeric solutions, i.e., Deacetilation Degree (DD) when the solute is chitosan. In this paper, the degradation of chitosan in different acidic environments by thermal treatment is addressed. In particular, two different solutions are investigated (used as solvent acetic or hydrochloric acid) with different concentrations used for the preparation of chitosan solutions. The samples were treated at different temperatures (4, 30, and 80 °C) and time points (3, 6 and 24 h). Rheological, Gel Permeation Chromatography (GPC), Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC) and Thermal Gravimetric Analyses (TGA) were performed in order to assess the degradation rate of the polymer backbones. Measured values of molecular weight have been integrated in the simulation of the batch degradation of chitosan solutions for evaluating MHS coefficients to be compared with their corresponding experimental values. Evaluating the relationship between the different parameters used in the preparation of chitosan solutions (e.g., temperature, time, acid type and concentration), and their contribution to the degradation of chitosan backbone, it is important to have a mathematical frame that could account for phenomena involved in polymer degradation that go beyond the solvent-solute combination. Therefore, the goal of the present work is to propose an integration of MHS coefficients for chitosan solutions that contemplate a deacetylation degree for chitosan systems or a more general substitution degree for polymers in which viscosity depends not only on molecular weight and solvent combinations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734360
Volume :
8
Issue :
6
Database :
Academic Search Index
Journal :
Polymers (20734360)
Publication Type :
Academic Journal
Accession number :
116380738
Full Text :
https://doi.org/10.3390/polym8060210