Back to Search Start Over

Calcium buffer proteins are specific markers of human retinal neurons.

Authors :
Kántor, Orsolya
Mezey, Szilvia
Adeghate, Jennifer
Naumann, Angela
Nitschke, Roland
Énzsöly, Anna
Szabó, Arnold
Lukáts, Ákos
Németh, János
Somogyvári, Zoltán
Völgyi, Béla
Source :
Cell & Tissue Research. Jul2016, Vol. 365 Issue 1, p29-50. 22p.
Publication Year :
2016

Abstract

Ca-buffer proteins (CaBPs) modulate the temporal and spatial characteristics of transient intracellular Ca-concentration changes in neurons in order to fine-tune the strength and duration of the output signal. CaBPs have been used as neurochemical markers to identify and trace neurons of several brain loci including the mammalian retina. The CaBP content of retinal neurons, however, varies between species and, thus, the results inferred from animal models cannot be utilised directly by clinical ophthalmologists. Moreover, the shortage of well-preserved human samples greatly impedes human retina studies at the cellular and network level. Our purpose has therefore been to examine the distribution of major CaBPs, including calretinin, calbindin-D28, parvalbumin and the recently discovered secretagogin in exceptionally well-preserved human retinal samples. Based on a combination of immunohistochemistry, Neurolucida tracing and Lucifer yellow injections, we have established a database in which the CaBP marker composition can be defined for morphologically identified cell types of the human retina. Hence, we describe the full CaBP make-up for a number of human retinal neurons, including HII horizontal cells, AII amacrine cells, type-1 tyrosine-hydroxylase-expressing amacrine cells and other lesser known neurons. We have also found a number of unidentified cells whose morphology remains to be characterised. We present several examples of the colocalisation of two or three CaBPs with slightly different subcellular distributions in the same cell strongly suggesting a compartment-specific division of labour of Ca-buffering by CaBPs. Our work thus provides a neurochemical framework for future ophthalmological studies and renders new information concerning the cellular and subcellular distribution of CaBPs for experimental neuroscience. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0302766X
Volume :
365
Issue :
1
Database :
Academic Search Index
Journal :
Cell & Tissue Research
Publication Type :
Academic Journal
Accession number :
116324606
Full Text :
https://doi.org/10.1007/s00441-016-2376-z