Back to Search Start Over

Inelastic Scattering of Identical Molecules within Framework of the Mixed Quantum/Classical Theory: Application to Rotational Excitations in H2 + H2.

Authors :
Semenov, Alexander
Babikov, Dmitri
Source :
Journal of Physical Chemistry A. Jun2016, Vol. 120 Issue 22, p3861-3866. 6p.
Publication Year :
2016

Abstract

Theoretical foundation is laid out for description of permutation symmetry in the inelastic scattering processes that involve collisions of two identical molecules, within the framework of the mixed quantum/classical theory (MQCT). In this approach, the rotational (and vibrational) states of two molecules are treated quantum-mechanically, whereas their translational motion (responsible for scattering) is treated classically. This theory is applied to H2 + H2 system, and the state-to-state transition cross sections are compared versus those obtained from the full-quantum calculations and experimental results from the literature. Good agreement is found in all cases. It is also found that results of MQCT, where the Coriolis coupling is included classically, are somewhat closer to exact full-quantum results than results of the other approximate quantum methods, where those coupling terms are neglected. These new developments allow applications of MQCT to a broad variety of molecular systems and processes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10895639
Volume :
120
Issue :
22
Database :
Academic Search Index
Journal :
Journal of Physical Chemistry A
Publication Type :
Academic Journal
Accession number :
116142002
Full Text :
https://doi.org/10.1021/acs.jpca.6b04556