Back to Search Start Over

Simultaneous removal of hydrocarbon and CO using a nonthermal plasma-catalytic hybrid reactor system.

Authors :
Jo, Jin-Oh
Trinh, Hung Quang
Kim, Seong H.
Mok, Young Sun
Source :
Chemical Engineering Journal. Sep2016, Vol. 299, p93-103. 11p.
Publication Year :
2016

Abstract

Combined removal of n-heptane and CO using a catalytic reactor coupled with dielectric barrier discharge plasma was investigated over several metal oxide catalysts including bare γ-Al 2 O 3 , Ag 2 O/γ-Al 2 O 3 , MnO/γ-Al 2 O 3 , RuO 2 /γ-Al 2 O 3 and PdO/γ-Al 2 O 3 . In order to effectively utilize the heat generated during plasma discharge for enhancing catalytic reactions, the plasma-catalytic reactor was thermally insulated by covering it with a glass wool jacket. Plasma propagated radially outward from the central high-voltage electrode with gradually increasing the applied voltage, and the temperature decreased with the radial distance due to the decreased plasma intensity, exhibiting a volcanic temperature distribution. The increased reactor temperature could improve the removal of CO and the selectivity toward CO 2 . The results obtained from separate experiments of n-heptane and CO removal showed that the PdO/γ-Al 2 O 3 was the best for the simultaneous removal purpose. The effects of specific input energy ( SIE ), oxygen content, reaction temperature and PdO loading on the simultaneous removal of n-heptane and CO and the formation of byproducts were examined. The removal efficiencies of n-heptane obtained with different catalysts were similar to one another, whereas the removal of CO strongly depended on the type of catalyst. The catalytic activity for the oxidation of CO followed the order: MnO/γ-Al 2 O 3 < Ag 2 O/γ-Al 2 O 3 < RuO 2 /γ-Al 2 O 3 < PdO/γ-Al 2 O 3 . In the present plasma-catalytic hybrid reactor, the mixture of n-heptane and CO was mainly converted into CO 2 , and under an optimized condition, the selectivity toward CO 2 reached 100%. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13858947
Volume :
299
Database :
Academic Search Index
Journal :
Chemical Engineering Journal
Publication Type :
Academic Journal
Accession number :
115549076
Full Text :
https://doi.org/10.1016/j.cej.2016.04.070