Back to Search
Start Over
Up-regulation of miRNA-221 inhibits hypoxia/reoxygenation-induced autophagy through the DDIT4/mTORC1 and Tp53inp1/p62 pathways.
- Source :
-
Biochemical & Biophysical Research Communications . May2016, Vol. 474 Issue 1, p168-174. 7p. - Publication Year :
- 2016
-
Abstract
- Timely reperfusion in acute myocardial infarction has improved clinical outcomes but the benefits are partially offset by ischemia-reperfusion injury (I/R). MiRNA regulates mRNA of multiple effectors within injury and survival cell signaling pathways. We have previously reported the protective effects of miRNA-221 in I/R injury. The purpose of this study was to explore the mechanisms underlying cardioprotection of miR-221. Myoblast H9c2 and neonatal rat ventricular myocytes (NRVM) were subjected to 0.2% O2 hypoxia followed by 2 h of re-oxygenation (H/R). In gain-and-loss function studies through transfections of miR-221 mimic (miR-221) and inhibitor (miR-221-i), the protective effects of miR-221 were confirmed as assessed by increased cell metabolic activity (WST-1) and decreased LDH release. Autophagy was assessed by GFP-LC3 labeling of autophagosome formation, LC3 and p62 measurements. Co-immuno-precipitation and specific gene cloning and function were used to identify the pathways underpinning miR-221 effects. MiR-221 significantly reduced H/R injury in association with inhibition of autophagy. Underlying mechanisms include (1) down-regulation of Ddit4 (disinhibiting the mTORC1/p-4EBP1 pathway) which inhibits autophagosome formation (2) down-regulation of Tp53inp1 (with reduced Tp53inp1/p62 complex formation) which inhibits autophagosome degradation. In conclusion, miRNA-221 exerts cytoprotective effects in hypoxia-reoxygenation injury in association with alterations in autophagic cell injury. Mir-221 may constitute is a novel therapeutic target in the treatment of cardiac I/R injury. [ABSTRACT FROM AUTHOR]
- Subjects :
- *MYOCARDIAL infarction treatment
*MICRORNA
*AUTOPHAGY
*HYPOXEMIA
*REPERFUSION
Subjects
Details
- Language :
- English
- ISSN :
- 0006291X
- Volume :
- 474
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Biochemical & Biophysical Research Communications
- Publication Type :
- Academic Journal
- Accession number :
- 115484306
- Full Text :
- https://doi.org/10.1016/j.bbrc.2016.04.090