Back to Search Start Over

Time-Resolved Broadband Cavity-Enhanced Absorption Spectroscopy behind Shock Waves.

Authors :
Akira Matsugi
Hiroumi Shiina
Tatsuo Oguchi
Kazuo Takahashi
Source :
Journal of Physical Chemistry A. 4/7/2016, Vol. 120 Issue 13, p2070-2077. 8p.
Publication Year :
2016

Abstract

A fast and sensitive broadband absorption technique for measurements of high-temperature chemical kinetics and spectroscopy has been developed by applying broadband cavity-enhanced absorption spectroscopy (BBCEAS) in a shock tube. The developed method has effective absorption path lengths of 60-200 cm, or cavity enhancement factors of 12-40, over a wavelength range of 280-420 nm, and is capable of simultaneously recording absorption time profiles over an ∼32 nm spectral bandpass in a single experiment with temporal and spectral resolutions of 5 μs and 2 nm, respectively. The accuracy of the kinetic and spectroscopic measurements was examined by investigating high-temperature reactions and absorption spectra of formaldehyde behind reflected shock waves using 1,3,5-trioxane as a precursor. The rate constants obtained for the thermal decomposition reactions of 1,3,5-trioxane (to three formaldehyde molecules) and formaldehyde (to HCO + H) agreed well with the literature data. High-temperature absorption cross sections of formaldehyde between 280 and 410 nm have been determined at the post-reflected-shock temperatures of 955, 1265, and 1708 K. The results demonstrate the applicability of the BBCEAS technique to time- and wavelength-resolved sensitive absorption measurements at high temperatures. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10895639
Volume :
120
Issue :
13
Database :
Academic Search Index
Journal :
Journal of Physical Chemistry A
Publication Type :
Academic Journal
Accession number :
115449617
Full Text :
https://doi.org/10.1021/acs.jpca.6b01069