Back to Search Start Over

Shroud leakage flow models and a multi-dimensional coupling CFD (computational fluid dynamics) method for shrouded turbines.

Authors :
Zou, Zhengping
Liu, Jingyuan
Zhang, Weihao
Wang, Peng
Source :
Energy. May2016, Vol. 103, p410-429. 20p.
Publication Year :
2016

Abstract

Multi-dimensional coupling simulation is an effective approach for evaluating the flow and aero-thermal performance of shrouded turbines, which can balance the simulation accuracy and computing cost effectively. In this paper, 1D leakage models are proposed based on classical jet theories and dynamics equations, which can be used to evaluate most of the main features of shroud leakage flow, including the mass flow rate, radial and circumferential momentum, temperature and the jet width. Then, the 1D models are expanded to 2D distributions on the interface by using a multi-dimensional scaling method. Based on the models and multi-dimensional scaling, a multi-dimensional coupling simulation method for shrouded turbines is developed, in which, some boundary source and sink are set on the interface between the shroud and the main flow passage. To verify the precision, some simulations on the design point and off design points of a 1.5 stage turbine are conducted. It is indicated that the models and methods can give predictions with sufficient accuracy for most of the flow field features and will contribute to pursue deeper understanding and better design methods of shrouded axial turbines, which are the important devices in energy engineering. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03605442
Volume :
103
Database :
Academic Search Index
Journal :
Energy
Publication Type :
Academic Journal
Accession number :
115287620
Full Text :
https://doi.org/10.1016/j.energy.2016.02.070