Back to Search Start Over

A possible link between life and death of a xeric tree in desert.

Authors :
Xu, Gui-Qing
McDowell, Nate G.
Li, Yan
Source :
Journal of Plant Physiology. May2016, Vol. 194, p35-44. 10p.
Publication Year :
2016

Abstract

Understanding the interactions between drought and tree ontogeny or size remains an essential research priority because size-specific mortality patterns have large impacts on ecosystem structure and function, determine forest carbon storage capacity, and are sensitive to climatic change. Here we investigate a xerophytic tree species ( Haloxylon ammodendron (C.A. Mey.)) with which the changes in biomass allocation with tree size may play an important role in size-specific mortality patterns. Size-related changes in biomass allocation, root distribution, plant water status, gas exchange, hydraulic architecture and non-structural carbohydrate reserves of this xerophytic tree species were investigated to assess their potential role in the observed U-shaped mortality pattern. We found that excessively negative water potentials (<−4.7 MPa, beyond the P50 leaf of −4.1 MPa) during prolonged drought in young trees lead to hydraulic failure; while the imbalance of photoassimilate allocation between leaf and root system in larger trees, accompanied with declining C reserves (<2% dry matter across four tissues), might have led to carbon starvation. The drought-resistance strategy of this species is preferential biomass allocation to the roots to improve water capture. In young trees, the drought-resistance strategy is not well developed, and hydraulic failure appears to be the dominant driver of mortality during drought. With old trees, excess root growth at the expense of leaf area may lead to carbon starvation during prolonged drought. Our results suggest that the drought-resistance strategy of this xeric tree is closely linked to its life and death: well-developed drought-resistance strategy means life, while underdeveloped or overdeveloped drought-resistance strategy means death. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01761617
Volume :
194
Database :
Academic Search Index
Journal :
Journal of Plant Physiology
Publication Type :
Academic Journal
Accession number :
115216596
Full Text :
https://doi.org/10.1016/j.jplph.2016.02.014