Back to Search Start Over

Two-center three-electron bonding in ClNH3 revealed via helium droplet infrared laser Stark spectroscopy: Entrance channel complex along the Cl + NH3 → ClNH2 + H reaction.

Authors :
Moradi, Christopher P.
Changjian Xie
Kaufmann, Matin
Hua Guo
Douberly, Gary E.
Source :
Journal of Chemical Physics. 2016, Vol. 144 Issue 16, p1-8. 8p. 2 Diagrams, 1 Chart, 7 Graphs.
Publication Year :
2016

Abstract

Pyrolytic dissociation of Cl2 is employed to dope helium droplets with single Cl atoms. Sequential addition of NH3 to Cl-doped droplets leads to the formation of a complex residing in the entry valley to the substitution reaction Cl + NH3 → ClNH2 + H. Infrared Stark spectroscopy in the NH stretching region reveals symmetric and antisymmetric vibrations of a C3v symmetric top. Frequency shifts from NH3 and dipole moment measurements are consistent with a ClNH3 complex containing a relatively strong two-center three-electron (2c-3e) bond. The nature of the 2c-3e bonding in ClNH3 is explored computationally and found to be consistent with the complexation-induced blue shifts observed experimentally. Computations of interconversion pathways reveal nearly barrierless routes to the formation of this complex, consistent with the absence in experimental spectra of two other complexes, NH3Cl and Cl-HNH2, which are predicted in the entry valley to the hydrogen abstraction reaction Cl + NH3 → HCl + NH2. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
144
Issue :
16
Database :
Academic Search Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
115096314
Full Text :
https://doi.org/10.1063/1.4947089