Back to Search Start Over

Dynamic modulus and strain wave velocity in ballistic fibre strands.

Authors :
Miao, Menghe
Source :
Journal of Materials Science. Jun2016, Vol. 51 Issue 12, p5939-5947. 9p. 1 Black and White Photograph, 2 Diagrams, 5 Graphs.
Publication Year :
2016

Abstract

Strain wave propagation velocity in fibre materials is a primary consideration in the design of body armours for ballistic protection. In this paper, we compare the strain wave propagation (sonic) velocities and moduli of parallel and twisted ballistic fibre strands (yarns) derived from quasi-static tensile test and strain wave pulse test. In parallel multifilament yarns, the individual fibres behave independently from each other, and the yarn sonic velocities and moduli derived from the two test methods match each other very closely. In yarns with a twisted structure by twisting multifilament yarn or by spinning short fibres, fibres in the yarns are compressed against each other and fibre-to-fibre friction plays a significant role. Consequently, the yarn sonic velocities and moduli determined by the strain wave pulse method are significantly greater than that derived from the quasi-static tensile method. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00222461
Volume :
51
Issue :
12
Database :
Academic Search Index
Journal :
Journal of Materials Science
Publication Type :
Academic Journal
Accession number :
114246105
Full Text :
https://doi.org/10.1007/s10853-016-9895-6