Back to Search Start Over

Leukemogenic potency of the novel FLT3-N676K mutant.

Authors :
Huang, Kezhi
Yang, Min
Pan, Zengkai
Heidel, Florian
Scherr, Michaela
Eder, Matthias
Fischer, Thomas
Büsche, Guntram
Welte, Karl
Neuhoff, Nils
Ganser, Arnold
Li, Zhixiong
Heidel, Florian H
von Neuhoff, Nils
Source :
Annals of Hematology. Apr2016, Vol. 95 Issue 5, p783-791. 9p.
Publication Year :
2016

Abstract

The novel FMS-like tyrosine kinase 3 (FLT3)-N676K point mutation within the FLT3 kinase domain-1 was recently identified in 6 % of de novo acute myeloid leukemia (AML) patients with inv(16). Because FLT3-N676K was encountered almost exclusively in inv(16) AML, we investigated the transforming potential of FLT3-N676K, the cooperation between FLT3-N676K and core binding factor ß-smooth muscle myosin heavy chain (CBFß-SMMHC) (encoded by the inv(16) chimeric gene CBFB-MYH11) in inducing acute leukemia, and tested the sensitivity of FLT3-N676K-positive leukemic cells to FLT3 inhibitors. Retroviral expression of FLT3-N676K in myeloid 32D cells induced AML in syngeneic C3H/HeJ mice (n = 11/13, median latency 58 days), with a transforming activity similar to FLT3-internal tandem duplication (ITD) (n = 8/8), FLT3-TKD D835Y (n = 8/9), and FLT3-ITD-N676K (n = 9/9) mutations. Three out of 14 (21.4 %) C57BL/6J mice transplanted with FLT3-N676K-transduced primary hematopoietic progenitor cells developed acute leukemia (latency of 68, 77, and 273 days), while no hematological malignancy was observed in the control groups including FLT3-ITD. Moreover, co-expression of FLT3-N676K/CBFß-SMMHC did not promote acute leukemia in three independent experiments (n = 16). In comparison with FLT3-ITD, FLT3-N676K induced much higher activation of FLT3 and tended to trigger stronger phosphorylation of MAPK and AKT. Importantly, leukemic cells carrying the FLT3-N676K mutant in the absence of an ITD mutation were highly sensitive to FLT3 inhibitors AC220 and crenolanib, and crenolanib even retained activity against the AC220-resistant FLT3-ITD-N676K mutant. Taken together, the FLT3-N676K mutant is potent to transform murine hematopoietic stem/progenitor cells in vivo. This is the first report of acute leukemia induced by an activating FLT3 mutation in C57BL/6J mice. Moreover, further experiments investigating molecular mechanisms for leukemogenesis induced by FLT3-N676K mutation and clinical evaluation of FLT3 inhibitors in FLT3-N676K-positive AML seem warranted. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09395555
Volume :
95
Issue :
5
Database :
Academic Search Index
Journal :
Annals of Hematology
Publication Type :
Academic Journal
Accession number :
114118693
Full Text :
https://doi.org/10.1007/s00277-016-2616-z