Back to Search Start Over

Investigation and Mitigation of the Crosstalk Effect in Terra MODIS Band 30.

Authors :
Sun, Junqiang
Madhavan, Sriharsha
Wang, Menghua
Source :
Remote Sensing. Mar2016, Vol. 8 Issue 3, p249. 17p.
Publication Year :
2016

Abstract

It has been previously reported that thermal emissive bands (TEB) 27-29 in the Terra (T-) MODerate resolution Imaging Spectroradiometer (MODIS) have been significantly affected by electronic crosstalk. Successful linear theory of the electronic crosstalk effect was formulated, and it successfully characterized the effect via the use of lunar observations as viable inputs. In this paper, we report the successful characterization and mitigation of the electronic crosstalk for T-MODIS band 30 using the same characterization methodology. Though the phenomena of the electronic crosstalk have been well documented in previous works, the novel for band 30 is the need to also apply electronic crosstalk correction to the non-linear term in the calibration coefficient. The lack of this necessity in early works thus demonstrates the distinct difference of band 30, and, yet, in the same instances, the overall correctness of the characterization formulation. For proper result, the crosstalk correction is applied to the band 30 calibration coefficients including the non-linear term, and also to the earth view radiance. We demonstrate that the crosstalk correction achieves a long-term radiometric correction of approximately 1.5 K for desert targets and 1.0 K for ocean scenes. Significant striping removal in the Baja Peninsula earth view imagery is also demonstrated due to the successful amelioration of detector differences caused by the crosstalk effect. Similarly significant improvement in detector difference is shown for the selected ocean and desert targets over the entire mission history. In particular, band 30 detector 8, which has been flagged as "out of family" is restored by the removal of the crosstalk contamination. With the correction achieved, the science applications based on band 30 can be significantly improved. The linear formulation, the characterization methodology, and the crosstalk effect correction coefficients derived using lunar observations are once again demonstrated to work remarkably well. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
8
Issue :
3
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
114038317
Full Text :
https://doi.org/10.3390/rs8030249