Back to Search Start Over

Co-Clustering under the Maximum Norm.

Authors :
Bulteau, Laurent
Froese, Vincent
Hartung, Sepp
Niedermeier, Rolf
Source :
Algorithms. 2016, Vol. 9 Issue 1, p17. 17p.
Publication Year :
2016

Abstract

Co-clustering, that is partitioning a numerical matrix into "homogeneous" submatrices, has many applications ranging from bioinformatics to election analysis. Many interesting variants of co-clustering are NP-hard. We focus on the basic variant of co-clustering where the homogeneity of a submatrix is defined in terms of minimizing the maximum distance between two entries. In this context, we spot several NP-hard, as well as a number of relevant polynomial-time solvable special cases, thus charting the border of tractability for this challenging data clustering problem. For instance, we provide polynomial-time solvability when having to partition the rows and columns into two subsets each (meaning that one obtains four submatrices). When partitioning rows and columns into three subsets each, however, we encounter NP-hardness, even for input matrices containing only values from f0, 1, 2g. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19994893
Volume :
9
Issue :
1
Database :
Academic Search Index
Journal :
Algorithms
Publication Type :
Academic Journal
Accession number :
114010335
Full Text :
https://doi.org/10.3390/a9010017