Back to Search Start Over

Training Classifiers under Covariate Shift by Constructing the Maximum Consistent Distribution Subset.

Authors :
Yu, Xu
Yu, Miao
Xu, Li-xun
Yang, Jing
Xie, Zhi-qiang
Source :
Mathematical Problems in Engineering. 12/9/2015, p1-9. 9p.
Publication Year :
2015

Abstract

The assumption that the training and testing samples are drawn from the same distribution is violated under covariate shift setting, and most algorithms for the covariate shift setting try to first estimate distributions and then reweight samples based on the distributions estimated. Due to the difficulty of estimating a correct distribution, previous methods can not get good classification performance. In this paper, we firstly present two types of covariate shift problems. Rather than estimating the distributions, we then desire an effective method to select a maximum subset following the target testing distribution based on feature space split from the auxiliary set or the target training set. Finally, we prove that our subset selection method can consistently deal with both scenarios of covariate shift. Experimental results demonstrate that training a classifier with the selected maximum subset exhibits good generalization ability and running efficiency over those of traditional methods under covariate shift setting. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1024123X
Database :
Academic Search Index
Journal :
Mathematical Problems in Engineering
Publication Type :
Academic Journal
Accession number :
113599571
Full Text :
https://doi.org/10.1155/2015/302815