Back to Search
Start Over
Performance Simulation and Design Optimization of Gain-Clamped Semiconductor Optical Amplifiers Based on Distributed Bragg Reflectors.
- Source :
-
IEEE Journal of Quantum Electronics . Nov2003, Vol. 39 Issue 11, p1415-1423. 9p. - Publication Year :
- 2003
-
Abstract
- Performance of the gain-clamped semiconductor optical amplifier (GC-SOA) based on the distributed Bragg reflector (DBR) structures is investigated by a comprehensive broad-band time-domain traveling wave model Critical factors, e.g., the material gain profile, the waveguide grating structures, the longitudinal variation of the optical field, and the carrier density as well as the broad-band spontaneous noise emission are considered in the model. The effects of operation parameters (e.g., the electrical bias current and the input optical power) and design parameters (e.g., the normalized coupling coefficient κL and the lasing wave-length position λ[SUBL]) on device performance are examined in detail. Based on the results of the performance simulation, guidelines for design optimization are discussed and, in particular, unbalanced grating configurations combined with nonuniform current injection schemes are proposed to reduce the noise figure without much sacrifice on other device performance. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00189197
- Volume :
- 39
- Issue :
- 11
- Database :
- Academic Search Index
- Journal :
- IEEE Journal of Quantum Electronics
- Publication Type :
- Academic Journal
- Accession number :
- 11349133
- Full Text :
- https://doi.org/10.1109/JQE.2003.818287